Прозрачные элементы брони (или бронестекло)


Выписка из ГОСТ Р 51136-2008

Термины и определения

Защитное многослойное стекло: Склеенные между собой полимерными материалами в различном сочетании пластины силикатного стекла, силикатного с органическим стеклом, поликарбонатом или упрочняющими пленками. Представляет собой многослойный блок, обладающий защитными свойствами.

Ударостойкое стекло: Защитное стекло, выдерживающее многократный удар свободно падающего тела с нормируемыми показателями.

Ударостойкое - безопасное стекло для строительства: Защитное стекло, выдерживающее удары мягким или твердым телом некомпактной массы.

Устойчивое к пробиванию или прорубанию стекло: Защитное стекло, на котором не образовалось отверстие или образовалось отверстие размером менее 400х400 мм или диаметром менее 500 мм при воздействии определенного числа ударов дробящим и/или рубящим инструментом.

Пулестойкое стекло: Защитное стекло, способное противостоять сквозному пробитию пулями и их фрагментами при обстреле из регламентированного оружия без образования при этом вторичных поражающих элементов (осколков стекла), способных пробить контрольный экран.

Взрывобезопасное стекло: Защитное стекло, устойчивое к воздействию воздушной ударной волны (ВУВ), с нормируемыми параметрами без образования при этом вторичных поражающих элементов (осколков стекла), способных пробить контрольный экран-свидетель.

Пожаростойкое стекло: Элемент заполнения светопрозрачных конструкций, служащих для ограждения или разделения объемов (помещений) зданий и сооружений и препятствующих распространению пожара в другие помещения (отсеки) в течение нормируемого времени.

Пожаростойкость стекла: Свойство стекла обеспечивать защиту от воздействия опасных факторов пожара, характеризуемое временем от начала огневого испытания при стандартном температурном режиме до наступления одного или последовательно нескольких нормируемых предельных состояний.

Противоосколочная пленка: Полимерный самоклеющийся материал, наклеиваемый на тыльную сторону стекла с целью защиты человека от вторичных поражающих элементов (осколков стекла).

Триплексное стекло: Склеенные между собой полимерными материалами две пластины (два листа) силикатного стекла.


Классификация

Ударостойкое стекло в зависимости от его характеристик подразделяют на классы защиты А1, А2 и A3.

Ударостойкое - безопасное стекло для строительства в зависимости от его характеристик подразделяют на классы защиты СМ1, СМ2, СМ3, СТ1, СТ2, СТ3.

Устойчивое к пробиванию стекло стекло подразделяют на классы защиты Б1, Б2, Б3.

Пулестойкое стекло в зависимости от его стойкости при обстреле из определенного вида оружия определенными боеприпасами подразделяют на классы защиты 1, 2, 2а, 3, 4, 5, 5а, 6, 6а.

Взрывобезопасное стекло в зависимости от его стойкости к воздействию ВУВ с определенными параметрами подразделяют на классы защиты J1-J7 и G1-G7.

Пожаростойкое стекло в зависимости от свойств сопротивляемости пожару различают по времени наступления одного или последовательно нескольких, нормируемых признаков предельных состояний:
- потеря целостности;
- потеря теплоизолирующей способности по прогреву;
- потеря теплоизолирующей способности по тепловому излучению.

Пример обозначения стекла с пожаростойкостью 45 мин по потере целостности; 30 мин - по потере теплоизолирующей способности по прогреву (повышению температуры на необогреваемой поверхности до значения, указанного в ТУ на конкретные стекла; 30 мин - по потере теплоизолирующей способности по тепловому излучению (достижению допустимого значения плотности потока теплового излучения, указанного в ТУ на конкретные стекла): E45/I30/W30

Морозостойкое стекло, в зависимости от его композиции, эксплуатация которого производится при температуре до минус 40 °С не должно допускать образования пороков внешнего вида, превышающих нормируемые.

Защитным стеклам, выдержавшим испытания на морозостойкость к обозначению класса защиты добавляют буквы ХЛ.


История создания

Применение прозрачной брони началось в конце 1930-х годов и было вызвано развитием военной авиации. Вслед за появлением прозрачного фонаря кабины пилота из безосколочного органического стекла появляется необходимость защиты лётчика от пулемётного огня самолётов противника. Ввиду жёстких массовых и габаритных ограничений, присущих авиации, защита лётчика могла быть обеспечена лишь от самого малого (и наиболее массового) калибра пулемётно-пушечного вооружения того периода 7,62-7,92 мм. Это в полной мере относится как к прозрачной, так и к непрозрачной (металлической) броне, последняя по массе, выделенной на защиту самолёта, заметно превосходила прозрачную броню. В период Второй мировой войны прозрачная броня устанавливалась практически на всех типах боевых самолётов воюющих государств — истребителях, истребителях-бомбардировщиках, штурмовиках и бомбардировщиках.

Отечественная прозрачная «таблетированная» броня марки К-4 устанавливалась на штурмовике Ил-2. Представляла собой слоистую композицию с внешним слоем из закалённого стекла (сталинита) толщиной 34 мм, набранного из плиток 100х150 мм, и внутренним слоем или «подушкой» из органического стекла 30 мм. Выпускалась в виде плоских плит, слои соединялись тонкой плёнкой поливинилбутираля. При толщине 64 мм и массе 120 кг/ кв. м броня не пробивалась 7,62 мм бронебойной пулей при стрельбе практически в упор (Д=30 м). В том или ином виде «таблетированная» броня применялась на всех типах советских самолётов — истребителях Яковлева Як-7 и Як-9, Лавочкина Ла-5 и Ла-7 и др. Полигонные испытания отечественной прозрачной брони обстрелом проводились бронебойной пулей Б-30 по нормали к поверхности брони, дистанция стрельбы составляла 30 м. К 1943 году создана улучшенная броня марки К-5 со сплошными слоями силикатного стекла, установлена на штурмовике Ил-10. В СССР работы по созданию прозрачной брони на основе органического стекла проводились Всесоюзным институтом авиационных материалов ВИАМ. Один из создателей брони инженер М. В. Думнов. Руководители этой работы Б. В. Ерофеев и М. М. Гудимов были удостоены Сталинской премии. Производство было организовано на заводе 148 (заводе «Рулон») в городе Дзержинске при техническом руководстве Б. П. Зверева.

В 1942 году новый вариант прозрачной авиационной брони из органического стекла разработал З. Н. Красильников.

На немецких самолётах широко применялась «триплексированное» бронестекло — пакет из закалённых стеклопластин, склеенных в монолит прозрачным клеем. На самолётах Fw-190 серий А4-А8 устанавливалось четырёхслойное (6+17+18+6 мм) лобовое бронестекло толщиной 50 мм под углом 25 градусов к продольной оси машины. Масса стеклоблока 14,6 кг или 120 кг/ кв. м . Испытания брони на стойкость проводилось на образцах размером 400х330 мм одиночным обстрелом бронебойной пулей SmK 7,9 мм из пулемета MG 17 с дистанции 50 м. В годы войны Институт баллистики Технической академии ВВС Германии Technische Akademie der Luftwaffe под руководством Г. Шардина изучал процессы последовательного разрушения слоев стекла при пробитии прозрачной брони пулями с помощью высокочастотной искровой камеры.

В целом, противопульная прозрачная броня, при равной со стальной бронёй стойкости, имела приблизительно одинаковую с ней массу квадратного метра защиты и в четыре раза большую толщину, последнее является, своего рода, платой за прозрачность. Аналогично стальной (металлической) броне, с увеличением угла обстрела прозрачной брони от нормали, её стойкость увеличивается (дистанция непробития брони уменьшается). Иными словами стойкость брони положительно реагирует на изменение косинуса угла соударения. Серийная прозрачная броня периода Второй мировой войны в толщинах 50-60 мм обеспечивала защиту от 7,62-7,92 мм бронебойных пуль с нулевой дальности. При этом стеклоблок толщиной 60 мм выдерживал бронебойную пулю по нормали, а блок толщиной 50 мм — под углом, с учётом конструктивного угла установки прозрачной брони. Использованная на истребителях «Спитфайр Mk.VB» и Р-39 «Аэрокобра» 38-мм лобовая броня фонаря кабины обеспечивала только частичную защиту от бронебойных пуль винтовочного калибра. Прозрачная броня толщиной 76 мм защищала от 12,7-мм бронебойных пуль. Лобовое бронестекло толщиной 75 мм, установленное на германском самолёте-штурмовике Hs-129, рассчитано на защиту лётчика с передней полусферы от 12,7-мм бронебойных пуль зенитного пулемета «ДШК» с дальностей 200—300 м. Среди конструкторов бронезащиты известен некий парадокс, согласно которому броня поражается совсем не теми средствами, на защиту от которых рассчитана. В действительности имеются свидетельства очевидцев времен войны о защите (спасении) лётчика при прямых попаданиях 20-мм разрывного снаряда в лобовое бронестекло кабины Ил-2.

На заключительном этапе войны происходит резкое увеличение толщин прозрачной брони, установленной на немецких реактивных истребителях Ме 163, Ме 262, He 162, Не 280 и др. Указанное было связано с тактикой их боевого применения по бомбардировщикам союзников (США и Великобритании), оборонительное вооружение которых было широко представлено крупнокалиберными 12,7-мм пулемётами «Кольт-Браунинг». В этом случае действие 12,7-мм пуль по броне самолёта-перехватчика происходило, в том числе, на встречных курсах, то есть при сложении векторов скоростей, при собственной скорости реактивного самолёта V=200 м/c. С учётом этого обстоятельства, на новых реактивных истребителях устанавливалось усиленное бронирование лётчика и некоторых уязвимых агрегатов только со стороны передней полусферы с обеспечением полной защиты от указанного калибра. Прозрачная броня фонаря кабины рассчитывалась на действие 12,7-мм бронебойных пуль и имела толщину 90-100 мм, толщины поперечной стальной брони, перекрывающей сечение фюзеляжа, также достигали рекордных для авиации значений 15 и 20 мм.

Послевоенное развитие прозрачной брони

В СССР вплоть до окончания войны требования по защите летчика (экипажа) прозрачной броней ограничивались исключительно калибром 7,62-7,92 мм. После окончания войны, во второй половине 1940-х годов возникла необходимость защиты кабины и от огня 12,7 мм пулеметов A/N M2 «Кольт-Браунинг», являвшихся стандартным вооружением самолетов-истребителей ВВС США. Специалистами ВИАМ было установлено положительное влияние металлической обоймы на стойкость прозрачной брони. И на реактивных самолетах истребителях и истребителях-бомбардировщиках выпуска 1950-х и 1960-х и 1970-х годов прозрачная броня кабины имела стандартное металлическое обрамление.

В начале 1950-х годов в СССР, не без влияния немецкой практики защиты реактивных истребителей, была создана авиационная прозрачная броня для защиты от бронебойного снаряда М75 20-мм авиапушки Испано-Сюиза HS-404. Пушка HS-404 обладала наибольшей среди авиапушек этого калибра дульной энергией. Такая броня толщиной 124 мм была создана ВИАМом при участии М.В. Думнова, руководитель работ Б.В. Перов, и установлена, в частности, на штурмовике Ил-40, истребителе-бомбардировщике Су-7 и некоторых других летательных аппаратах. Однако столь тяжёлая пассивная защита, её масса составляла порядка 280 кг/м2 масса стеклоблока 43 кг), с связи с бурным развитием в этот период сверхзвуковой авиации и ракетного вооружения самолётов, вскоре стала анахронизмом, и при переходе к следующему поколению самолётов 1970-х годов от неё отказались. В этот же период, в связи со сменой военной доктрины СССР, отказались и от самих самолётов-штурмовиков. В США в 1950-е годы был принят на вооружение ВМС палубный штурмовик А-4 «Скайхок», прослуживший в строевых частях более 25 лет и широко применявшийся практически во всех вооруженных конфликтах 1960-х, 1970-х и 80-х годов.


Современное применение прозрачной брони

По современным представлениям прозрачная броня, наряду с непрозрачной броней кабины пилота, является одним из элементов обеспечения боевой живучести летательных аппаратов (ЛА).

На самолётах-истребителях США третьего и четвёртого поколений (1970—1980 годов) прозрачная броня кабины практически отсутствует. В случаях установки прозрачной брони, например, на многоцелевом истребителе F-4E Phantom или палубном истребителе F-14 Tomcat, её толщины минимальны, и составляют 32 мм, а сама броня имеет скорее символическое значение. На палубном истребителе-бомбардировщике F/A-18 прозрачная броня отсутствует. Сказанное связано с рядом обстоятельств. В том числе, с принципиальным изменением средств поражения этого класса ЛА, вызванного заменой стрелково-пушечного вооружения истребителей на управляемое ракетное оружие с боевыми частями осколочного типа, укомплектованными неконтактными взрывателями. В этих условиях расположение точек подрыва боевой части ракеты относительно ЛА и кабины пилота (то есть направлений подхода поражающих элементов к броне) приобретает равновероятный характер, и как следствие, исчезает само представление о предпочтительных направлениях действия поражающего средства.

Вместе с тем, прозрачная броня используется для защиты экипажей боевых вертолётов, действующих в зонах досягаемости огня автоматического пехотного оружия. В 1971 году в СССР на вооружение принят транспортно-боевой вертолёт Ми-24. Фонари кабин Ми-24 состоят из боковых панелей двойной кривизны из оргстекла и плоских лобовых пулестойких стеклоблоков. Широкие лобовые бронеблоки обеих, расположенных тандемом, кабин экипажа вместе со стальной бронёй кабины толщиной 4-5 мм надёжно защищают переднюю проекцию штурмана-оператора и пилота вертолёта от 7,62 мм пуль пехотного оружия. Прозрачная броня применяется для защиты кабины современных ударных вертолётов Ми-28 и Ка-50, передние и боковые окна которых выполнены из броневых стеклоблоков. По данным разработчиков, обеспечивается защита от пуль калибра 12,7 мм и 20-мм снарядов. Кабина бронированного штурмовика Су-25 с передних направлений обстрела также защищена прозрачным бронеблоком ТСК-137 толщиной 65 мм.

Традиционный и наиболее распространенный материал бронирования окон транспортных средств — закаленное стекло. Конструкция прозрачных «бронелистов» проста: между двумя толстыми стеклянными блоками запрессовывается прослойка из прозрачного ламината-поликарбоната. При попадании пули во внешнее стекло основной удар принимают на себя внешняя часть стеклянного «сэндвича» и ламинат, при этом стекло растрескивается характерной «паутиной», хорошо иллюстрируя направление рассеяния кинетической энергии. Слой поликарбоната препятствует проникновению пули во внутренний стеклянный слой.

Пулестойкое стекло часто называют «пуленепробиваемым». Это ошибочное определение, так как нет стекол разумной толщины, способных противостоять бронебойной пуле калибра 12,7 мм. Современная пуля такого типа имеет медную оболочку и сердечник из твердого плотного материала — например, обедненного урана или карбида вольфрама (по твердости последний сравним с алмазом). Вообще пулестойкость закаленного стекла зависит от многих факторов: калибр, тип, скорость пули, угол встречи с поверхностью и др., поэтому толщину пулестойких стекол зачастую выбирают с двойным запасом. В то же время его масса также увеличивается вдвое.

PERLUCOR — материал с высокой химической чистотой и выдающимися механическими, химическими, физическими и оптическими свойствами


Пулестойкое стекло имеет свои известные недостатки: оно не защищает от многочисленных попаданий и имеет слишком большой вес. Исследователи считают, что будущее в этом направлении принадлежит так называемому «прозрачному алюминию». Этот материал представляет собой специальный зеркально отполированный сплав, который вдвое легче и в четыре раза прочнее закаленного стекла. В его основе — оксинитрид алюминия — соединение алюминия, кислорода и азота, которое представляет собой прозрачную керамическую твердую массу. На рынке он известен под торговой маркой ALON. Производят его путем спекания изначально совершенно непрозрачной порошкообразной смеси. После того как смесь расплавится (температура плавления оксинитрида алюминия — 2140°C), ее резко охлаждают. Полученная твердая кристаллическая структура имеет такую же устойчивость к царапинам, как сапфир, то есть она практически не подвержена царапинам. Дополнительная полировка не только делает ее более прозрачной, но и укрепляет поверхностный слой.

Современные пулестойкие стекла изготавливаются трехслойными: снаружи расположена панель из оксинитрида алюминия, затем идет закаленное стекло, а завершается все слоем прозрачного пластика. Такой «сэндвич» не только прекрасно выдерживает попадания бронебойных пуль из ручного стрелкового оружия, но и способен противостоять более серьезным испытаниям, таким как огонь из пулемета калибра 12,7 мм.

Традиционно используемое в бронетехнике пулестойкое стекло царапает даже песок во время песчаных бурь, не говоря уже о воздействии на него осколков самодельных взрывных устройств и пуль, выпущенных из АК-47. Прозрачная «алюминиевая броня» гораздо устойчивее к подобному «выветриванию». Фактор, сдерживающий применение такого замечательного материала — его высокая стоимость: примерно в шесть раз выше, чем у­ закаленного стекла. Технология производства «прозрачного алюминия» разработана компанией Raytheon и сейчас предлагается под названием Surmet. При высокой стоимости этот материал все-таки дешевле сапфира, который применяется там, где нужна особенно высокая прочность (полупроводниковые приборы) или устойчивость к царапинам (стекла наручных часов). Поскольку для выпуска прозрачной брони привлекаются все большие производственные мощности, а оборудование позволяет выпускать листы все большей площади, ее цена в итоге может существенно снизиться. К тому же технологии производства все время совершенствуются. Ведь свойства такого «стекла», не пасующего перед обстрелом из пулемета БТР, слишком привлекательны. А если вспомнить, насколько «алюминиевая броня» снижает вес бронемашин, сомнений не остается: за этой технологией — будущее. Для примера: при третьем уровне защиты по стандарту STANAG 4569 типичное остекление площадью 3 кв. м будет весить около 600 кг. Такой излишек сильно влияет на ходовые качества бронемашины и, в итоге, на ее живучесть на поле боя.

Есть и другие компании, занимающиеся разработками в области прозрачной брони. CeramTec-ETEC предлагает PERLUCOR — стеклокерамику с высокой химической чистотой и выдающимися механическими, химическими, физическими и оптическими свойствами. Прозрачность материала PERLUCOR (свыше 92%) позволяет использовать его везде, где находит применение закаленное стекло, при этом он в три-четыре раза тверже стекла, а также выдерживает экстремально высокие (до 1600°C) температуры, воздействие концентрированных кислот и щелочей.

Компания IBD Deisenroth Engineering разработала прозрачную керамическую броню, сопоставимую по свойствам с непрозрачными образцами. Новый материал легче бронестекла примерно на 70% и может, по заявлениям IBD, выдерживать множественные попадания пуль в одни и те же области. Разработка является побочным продуктом процесса создания линейки бронекерамики IBD NANOTech. В процессе разработки компания создала технологии, позволяющие склеивать «мозаику» большой площади из мелких бронеэлементов (технология Mosaic Transparent Armour), а также ламинировать склейки укрепляющими подложками из фирменных нановолокон Natural NANO-Fibre. Такой подход дает возможность выпускать прочные прозрачные бронепанели, которые значительно легче традиционных из закаленного стекла.

Израильская компания Oran Safety Glass нашла свой путь в технологиях изготовления прозрачных бронелистов. Традиционно на внутренней, «безопасной» стороне стеклянной бронепанели расположен армирующий слой пластика, предохраняющий от разлетающихся осколков стекла внутрь бронемашины при попадании в стекло пуль и снарядов. Такой слой может постепенно покрываться царапинами при неаккуратных протирках, теряя прозрачность, а также имеет свойство отслаиваться. Запатентованная технология ADI укрепления слоев брони не требует такого армирования при соблюдении всех норм безопасности. Другая инновационная технология от OSG — ROCKSTRIKE. Хотя современная многослойная прозрачная броня защищена от ударов бронебойных пуль и снарядов, она подвержена растрескиванию и царапанью от попадания осколков и камней, а также постепенному расслоению бронелиста, — в итоге дорогостоящую бронепанель придется заменить. Технология ROCKSTRIKE является альтернативой армированию металлической сеткой и предохраняет стекло от повреждений твердыми предметами, летящими со скоростью до 150 м/с.